The realization space is
  [1   1   0                                1   0   1   1        0                                1         1                 x2]
  [0   1   1   3*x1*x2 - x1 - 2*x2^2 - x2 + 1   0   0   1   x2 - 1   3*x1*x2 - x1 - 2*x2^2 - x2 + 1   -x2 + 1   -x2^2 + 2*x2 - 1]
  [0   0   0                                0   1   1   1      -x2                               x1        x2               x2^2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal with 2 generators
avoiding the zero loci of the polynomials
RingElem[x2, x2 - 1, x1 - x2, 3*x1*x2^3 - x1*x2 + x1 - 2*x2^4 - x2^3, x1, 3*x1*x2^2 - x1*x2 - 2*x2^3 - x2 + 1, 3*x1*x2^2 - x1 - 2*x2^3 - x2^2 + 1, 3*x1*x2^3 - 3*x1*x2^2 + x1 - 2*x2^4 + x2^3 + x2 - 1, 3*x1*x2^2 - x1*x2 - 2*x2^3 - x2^2 + 1, 2*x2^2 - 2*x2 + 1, x2^2 - x2 + 1, 3*x1*x2^3 - 4*x1*x2^2 + x1*x2 - 2*x2^4 + x2^3 + x2 - 1, 3*x1*x2 - x1 - 2*x2^2 - x2 + 1, 3*x1*x2 - x1 - 2*x2^2 - x2, 3*x1*x2^2 - x1 - 2*x2^3 - x2^2 + x2, 3*x1 - 2*x2 - 1, 3*x1*x2 - x1 - 2*x2^2, 2*x2 - 1, 3*x1*x2^2 - 4*x1*x2 + x1 - 2*x2^3 + x2^2, 3*x1*x2^2 - x1 - 2*x2^3 - x2^2, 3*x1*x2^2 - x1 - 2*x2^3 - x2^2 - x2 + 1, 3*x1*x2 - 2*x1 - 2*x2^2 - x2 + 1, x1 - 1, 3*x1*x2^2 - x1*x2 - 2*x2^3 - x2^2 - x2 + 1]